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A useful parametrical model for the vertical structure of the pressure field induced by 
wind blowing over a field of surface gravity waves is proposed. The model is a linear 
expansion in a set of empirical orthogonal functions, derived from a set of 110 complex 
pressure profiles computed according to the theory of Miles (1957), and provides a 
compact, quantitative description of those profiles. The model has been used as an 
element in the analysis of a body of experimental data on wave-induced atmospheric 
pressure fluctuations obtained by Snyder et al. (1980). 

1. Introduction 
The primary mechanism for the transfer of energy and momentum from the wind 

to gravity waves on the surface of a body of water is the working of atmospheric 
pressure fluctuations on the moving water surface. These pressure fluctuations are 
composed of two parts, a turbulent component and a component induced by the wind 
blowing over the wavy surface. The latter part dominates the atmospheric input to the 
wave field except for wave components with essentially negligible energy densities. 
The objective of the present work is to develop a useful parametrical model for the 
vertical structure of this wave-induced component of the pressure field; as a by- 
product of that development, we have produced a detailed picture of the theoretical 
wave-induced pressure field according to Miles (1957). This undertaking was motivated 
by the following considerations. 

It is easily shown that the spectral quantity defining the rate at which wave- 
coherent pressure fluctuations do work on the wave field is the surface-displacement1 
atmospheric-pressure directional cross-spectrum, E,,(O, w ;  z ) ,  where 6 is surface dis- 
placement, P is atmospheric pressure, w and 0 are wave radian frequency and vector 
wavenumber direction respectively, and z is the elevation relative to the mean water 
surface at which the pressure is defined. We may, for example, expand the two fields 
in Fourier-Stieltjes integrals, 

[(x, t) = 1 1 d[(k, w )  ei@-x-ot), 

P(x, 2, t) = Ik d P  (k, w ;  z )  ei**x-wt), 

k w  
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where d[(k, w )  and dP(k,  w ;  z )  are the complex differential amplitudes of the respective 
fields at horizontal vector wavenumber k and frequency w, x is a horizontal position 
vector, and t is time. The average rate of energy transfer per unit horizontal area from 
wind to waves is, to lowest order, 

where ( ) indicates ensemble average. Substituting the expansions into this expression 
and invoking linear gravity wave dispersion and the reality, homogeneity, and 
stationarity of the two fields, we get, after some simple manipulations, 

where 

(the asterisk indicating complex conjugate). 
Thus, at  the small wave-amplitude limit, E,,(e, w ;  z )  evaluated a t  the mean water 

surface ( z  = 0) fixes the atmospheric energy flux into the corresponding wave com- 
ponent. At the same level of approximation, the wave-coherent pressure flnctuationa 
represent a linear response of the air flow to the boundary perturbations caused by the 
surface waves; consequently, we can write 

dp(e, W ;  Z) = P(e, W ;  2) g ( e ,  w ) ,  

where 3 is a complex function defining the vertical structure of the wave-induced 
pressure field. Using this in (1.1) gives 

E,, = P*Ep, (1.2) 

where 

defines the surface-wave directional spectrum. 
Field experiments designed to measure E,, typically employ an array of air pressure 

probes, distributed vertically and/or horizontally, superposed on a horizontal array 
of wave gauges. As few as one instrument of each type (Dobson 1971) and as many as 
seven pressure sensors and six wave gauges (Snyder et al. 1980) have been used. 
Spectral analysis of the resulting time series provides frequency cross-spectra between 
surface elevation a t  a number of horizontal displacements, between atmospheric 
pressure a t  a number of heights and displacements in the horizontal, and between 
surface elevation and atmospheric pressure a t  a number of heights and horizontal 
displacements. These data represent integral properties of E,,, E,,, and the three- 
dimensional atmospheric pressure spectrum (FQ2 in the notation of Snyder et al.). In 
particular, 

cgP(o; r, z )  = /02"deE,p(e, w ;  z )  e-k(ope).r (1.3) 

defines the frequency cross-spectrum between surface elevation and atmospheric 
pressure at  height z and horizontal displacement r. In  order to extract an estimate of 
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E,, from such a data set, it is necessary to construct parametrical models of E,, and 
the pressure transfer function p to be fitted in the least-squares sense to the observed 
set of frequency cross-spectra. Because of the limited number of discrete horizontal 
displacements and vertical positions provided by the instrument array and the 
statistical variability present in the observations, the number of free parameters in 
the models must be severely constrained to assure statistically significant results. It 
is important, therefore, to use any available a priori knowledge (or intuition, if neces- 
sary) to  design parametrical models which are efficient at representing the respective 
fields. 

has been applied in 
the past, ranging in complexity from the unidirectional distributions implicitly 
assumed by Dobson (1971) and Elliott (1972) to the bilinear expansions of Snyder 
(1974). Models for the vertical structure of r’ have generally assumed, in analogy with 
potential flow (uniform mean wind profile) theory, that the wave-induced pressure 
decays as e-bk5; Snyder took b = I, while Elliott allowed b to be a free parameter, 
fixed in the course of his analysis. The much more extensive data set of Snyder et al. 
(1980) allowed the application of more flexible vertical structure models, several of 
which were, in fact, used. Each took the form of a linear or bilinear expansion in one 
of two sets of z-dependent basis functions. The present work focuses on the derivation 
of one of these sets, founded in this case not on analogy with potential flow, but 
instead on the hypothesis that a parametrical model yielding an optimal representation 
of the pressure profiles predicted by Miles’ theory will be nearly optimal for representing 
those existing in nature. 

Accordingly, 110 complex pressure profiles have been computed from Miles’ 
governing equations for a range of wind and wave parameters ( 5  2); these were then 
subjected to empirical orthogonal function analysis to identify the dominant modes 
of vertical dependence in the profile set ( FJ 3). A linear expansion in the four dominant 
empirical orthogonal functions proved capable of representing 99.9999 % of the 
variance about zero of the theoretical profile set and is the optimal linear expansion of 
these profiles (in the sense that no other four-parameter expansion can approximate 
the profiles with a smaller residual mean square error). Contour plots of the four 
complex coefficients, along with the empirical orthogonal functions themselves, 
provide a graphical description of the wave-induced pressure field according to Miles. 
To the extent that nature differs from theory, a linear expansion in the same set of 
basis functions may be less than optimal for representing real profiles but is likely, 
nevertheless, to be more efficient than any model based on some arbitrarily selected 
basis function set or on less relevant a priori notions about the vertical structure of 
the wave-induced pressure field. 

A variety of models for the directional properties of E,, and 

2. The structure of the wave-induced pressure field according to Miles 
Central to our present understanding, albeit limited, of the pressure field induced 

by a sheared wind blowing over propagating surface waves is the theory of Miles (1957). 
It has the nice advantage of mathematical rigour, although the simplifications 
invoked to make the problem tractable result in a number of physically unrealistic 
consequences. In  particular, the neglect of viscosity and the perturbation turbulent 
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Reynolds stresses in the theory results in the appearance of an integrable singularity 
in the wave-induced velocity field at the critical height (the elevation above the mean 
surface where the mean wind speed matches the wave phase speed); this, in turn, 
causea the wave growth rate to depend rather sensitively on the properties of the mean 
wind profile at that level. Nevertheless, most subsequent efforts to improve on Miles’ 
formulation by including one or more of the factors neglected in his theory did not 
find that the resulting wave growth rates differed radically from Miles’ calculations 
(Phillips 1966; Hasselmann 1967, 1968; Davis 1969, 1970; Townsend 1971; Gent & 
Taylor 1976). Although the field experiments of Dobson (1971) indicated growth rates 
an order of magnitude larger than Miles predicts, later work (Elliott 1972; Snyder 
1974; Snyder et al. 1980) has shown that the discrepancy is considerably less than this, 
perhaps no more than a factor of 2. These developments suggest that, despite its 
shortcomings, Miles’ theory may still represent a useful asymptotic approximation 
and that smoothed properties of his model, such as pressure profiles, may indeed 
exhibit the dominant characteristics of those existring in nature. For that reason, as 
well as for its tractability and self-sufficiency, we deem Miles’ theory to be suitable 
for our purpose here. 

Miles considered the effect on a basic shear flow (the wind) of a perturbation caused 
by a small amplitude surface wave running along x at an angle 8 with respect to the 
wind direction. The component of the wind profile along x was taken to be (outtide a 
thin, viscous sublayer) 

where u, = 5 case, 
K 

typical of the near-surface turbulent atmospheric boundary layer; U, is the friction 
velocity, K is von KBrmAn’s constant ( =  0.4), zo is the roughness length, and z is the 
vertical co-ordinate measured upward from the mean sea surface. Neglecting viscosity 
and the perturbation turbulent Reynolds stresses, the linearized equations of motion 
governing the small perturbation in the air flow are 

I p(ut+ Uu,+wu,) = -Px, 

P(Wt + UW,) = - e, 
u, + wz = 0, 

with boundary conditions 

w = &+ U(O)[ ,  on z = 0, 

u = w = O  as z+m, 

where cis the sea surface elevation, pis the density of air, P the wave-induced pressure, 
u and UI are the x and x components of wave-induced velocity, respectively, and t is 
time. The subscripts denote partial differentiation with respect to the indicated 
variable. The surface wave is introduced by setting 
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where k is the surface wavenumber and C its phase velocity. Introducing a stream 
function Y to represent u and w satisfies the third of equations (2.1) exactly. Then, 

letting = @(z) dceiMx-ct), 

and p = P ( z )  dyeiMx-ct’, 

in the first two of (2.1) gives 

( U -  C) (qZz - k2$) - v, 3 = 0 

@=c-u(o )  on x = ~ ,  

Y=O as z+oo 

governing the vertical structure of the flow, with 

A 

for boundary conditions. The pressure vertical structure is given either by 

P ( z )  = p(q3-(u-c)3z), 

or P(z) = pk2Jzm dz (TJ - C )  9, (2.4) 

the second of which is preferred if solutions must be obtained numerically, as is the 
case here. The 3 and P profiles are, of course, implicitly dependent on the parameters 
of the wind (U, and zo) and the wave (w,  which fixes k and C through the dispersion 
relation) ; for simplicity here, we have explicitly indicated only the dependence on z. 

Equation (2.2) is the well-known Rayleigh equation of hydrodynamical stability 
theory. It is singular a t  the crit>ical height z = z,, where tJ(z,) = C. As a consequence, 
one of its two independent solutions has a logarithmic branch point there, and the 
question of the correct representation of the solution for z < z, reduces to whether it 
should be joined to the solution for z > z, via an infinitesimal indentation in the 
complex-z plane passing above or below the singularity. In either case, Y is continuous 
across the critical height, but all its derivatives (and, hence, u also) diverge there. 
By considering a thin, viscous layer centred on z = z,, this non-physical behaviour is 
removed and the proper connexion identified as the indentation under the singular 
point (see, for example, Meksyn 1961; Lin 1967; Long 1971). 

With minor modifications, the system of equations (2.2) and (2.3) are the ones 
solved numerically by Conte & Miles (1959) to obtain values of Miles’ growth rate 
parameter /3, defined in the present notation by 

A 

P(0)  = U$pk(a+i/9) .  (2.5) 

The modifications included (a) transformation to U(z) ,  instead of 2, as the independent 
variable, ( b )  applying the lower boundary condition at z = zo ( LT = 0) ,  instead of z = 0, 
( c )  replacing the boundary condition at infinity by 

3 z + k 3 = ~  8.9 ~ + m ,  

equivalent to requiring $’ to decay as e-ke for large z, and ( d )  non-dimensionalizing 
using U, and 1/k as velocity and length scales. The resulting equations were solved 
numerically by a fourth-order Runge-Kutta procedure. Starting values of each of the 
two independent, solutions, !?, and e2, and their derivatives just above and just below 
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the singular point were derived from truncated versions of the analytical power series 
solutions, obtainable by the method of Frobenius. The two solutions were then 
integrated separately down to U = 0 ( z  = zo), then upward (from the starting points 
near U = C ( z  = z,.)), pausing periodically to apply the boundary conditions and fix 
the coefficients in the full solution 

The upward integrati?n was stopped whenever the values of A and B stabilized. 
Although the ql and Y, often diverged as U (or z )  increased, stable A and B values 
were always obtained before machine overflow occurred. 

Conte & Miles report only the parameters 01 and /3, defined by (2.5), and provide 
no other information on the pressure vertical structure. For our purpose now, it is 
necessary to resolve the system ( 2 . 2 ) )  (2.3), and (2.4) to obtain P ( z )  profiles for a 
reasonably broad range of wind and wave parameters. To do this, a different numerical 
procedure was implemented, possibly slightly less accurate than the technique of Conte 
& Miles but much more conservative of computer time and much easier to apply. We 
describe this procedure briefly below. 

First, we modified equations (2 .2 ) ,  (2.3)) and (2.4) as Conte & Miles did (steps 
(a)-(d) above). We generalized the new vertical co-ordinate U' = In ( z ' / z i )  (primes 
indicating dimensionless quantities) to allow it to take on complex values, then chose 
a curved path in the complex- U' plane which passed below the singularity a t  U' = C' 
and terminated at u' = 0 and U' = U i ,  where boundary conditions are to be applied 
(for all calculations reported here, U, was the wind speed two surface wavelengths 
above the mean water level). The differential equation was replaced by a central 
finite-difference approximation defined on a mesh of 199 points equally spaced along 
the curved path. This formulation led to a system of linear algebraic equations for the 
199 complex @ values a t  the mesh points. Although the coefficient matrix was 
199 x 199, only 5 elements (at most) of each row were non-zero, so that solving the 
matrix problem was easy and uncomplicated. The use of U' (rather than z')  for the 
vertical co-ordinate causes the mesh points to be densely distributed close to the 
surface, where most of the variability in the solution is expected, and to be spread 
more thinly higher up in the flow, where the behaviour of the solution is expected to 
be simple ( N e-Z'). The pressure along the curved path was then computed by inserting 
the @ solution into the non-dimensional version of (2.4) and integrating numerically. 
Finally, this result was extrapolated by analytic continuation onto the real-U' axis. 
Since our curved solution path and that of Conte & Miles (including their infinitesimal 
indentation under U' = C') lie in the same simply connected region within which all 
functions involved are analytic, our analytically continued solution for the pressure 
on the real axis ought to be, within computational error, the same as theirs, had they 
computed it. 

This procedure has the advantage of complete numerical stability, but it is subject 
to two sources of error not usually present in this kind of calculation. First, the 
accuracy of the finite-difference approximations to the various derivatives is some- 
what reduced because the several mesh points defining the derivatives are not exactly 
collinear when the path is curved. This difficulty was minimized by choosing a segment 
of a circle in the complex-Ti' plane for the curved path. Second, truncation error 

\ 
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FIGURE 1. Comparison between real and imaginary parts of 9 = a + ip at z = 0 as computed 
here (0) and as computed by Conte & Miles (1959) (--.--). 

becomes very large if the path passes too close to the singularity, where all the 
derivatives of @ diverge. Minimizing the former error calls for a large path radius of 
curvature, but this worsens the error due to the second source. We have experi- 
mentally determined an acceptable compromise between these conflicting difficulties 
by solving the problem repeatedly for one set of wind/wave parameters, readjusting 
the path curvature after each trial, until the differences between our a and /3 values 
and those of Conte & Miles were approximately minimized. The same path was then 
used on all subsequent calculations. A comparison between Conte I% Miles results 
and ours is shown in figure 1. The two parameters of the problem are C' = C/Ul and 
Miles' wind profile parameter 

n = gz,/u:. 

Deep water dispersion has been assumed. Agreement is generally excellent between 
the two calculations. The largest discrepancies are for C' = 1 and SZ = 3 x and 
a t  C' = 9 and CI = 10-2. We suspect that, in the latter case a t  least, our value is more 
accurate than theirs, since theirs causes the corresponding curve to be somewhat 
kinked a t  this point. 

To test the analytic continuation procedure for extrapolating the curved path 
solution onto the real axis, the problem was solved for a uniform wind profile (but 
retaining the log profile 8s the independent co-ordinate replacing z in the numerical 
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FIGURE 2. profiles, computed from Miles' (1957),theory, plotted veraw dimensio$ess height 
z' = kz for C2 = 0.021. Solid curves are a = Re {P'}, dashed curves are /3 = Im {I"}. Profiles 
for C' = C / U ,  = 1 to 5 are shown in (a), 6 to 10 in (6 ) .  

procedure). The system of equations (2.2), (2.3), and (2.4) can be solved exactly for 
this case, giving (in dimensional form) 

P ( z )  = - pk( u - C)Z e-kz, 

The analytically continued numerical solution (for U' = 6.2, C' = 3.0) agreed with the 
exact solution to within 5.2 yo in magnitude and 0.5" in phase at  all elevations (up to 
2 wavelengths) in the flow. For all elevations below 1 wavelength, no error exceeded 
1.8 yo in magnitude or 0-4" in phase. 

The procedure was used to compute theoretical pressure profiles for eleven equally 
spaced values of a on the interval 0.001-0.021 and for C' values ranging from 1 to 10 
in steps of 1.  The profiles for C2 = 0.021 are shown in figures 2 and 3. Here, we have 
generalized Miles' a and ,8 parameters (equation (2.5)) to be z dependent, viz. 

2 1  
a(2)+$3(2) = ($) -$(z) = P'(2). 
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FIGURE 3. Same profiles a~ in figure 2 but plotted versus h' = 1 - e-z'. Note that the corres- 
ponding model profiles Asing four empirical orthogonal functions (see f 3) are indistinguishable 
on this scale from the curves shown. 

I n  terms of the dimensionless variables in which the numerical calculations were 
actually carried out, this is easily shown to be given by 

a(z') + ia(z') = IZ: dz' ( U' - c') *, 
where z' = kz, u' = U/U,, C' = C/U,, and @ = U r l q .  Figure 2 shows a and p for 
St = 0-021 in the interval from the surface to z' = 2n (one wavelength above the 
surface). Most of the variability in the profiles is clearly confined to the region near 
the surface. In  figure 3, the same profiles are plotted versus a deformed vertical 
co-ordinate, 

h' = 1 -e-z'. 

This representation has several advantages, e.g. the entire range of elevations 
0 < z < co corresponds to 0 < h' < 1 ; moreover, the region near the surface is stretched 
out while that higher in the flow is compressed, so that the structure in the solutions 
is more evenly distributed over the plots. (The co-ordinate U' in which the calculations 
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were actually performed also has this second advantage but does not serve as well 
for the presentation of results because the domain of the numerical solutions, 
0 < z' < 47r, maps into a different domain in U' for every combination of R and C'.) 
Finally, the function e+' (the expected vertical dependence of P' for a uniform 
wind profile) maps into a straight line, 

e-e' = 1 - h' 

in this representation. Thus, the extent to which a theoretical profile deviates from a 
straight line when plotted versus h' is an indication of the extent to which the sheared 
wind profile solution deviates from the uniform profile case. 

For smaller R values, the development of the a and p profiles with increasing C' 
was found to be qualitatively similar to that shown here for Q = 0.021 except that 
development progressed more slowly with increasing C' as R was reduced.This 
similarity of profile development suggested that the theoretical results could be 
compressed very efficiently by applying the method of empirical orthogonal functions 
to the set of computed profiles. This procedure has been frequently used to interpret 
observational data (see, for example, Winant, Inman & Nordstrom 1975; Smith & 
Woolf 1976; Davis 1976), but it serves equally well for numerically generated theoretical 
data sets such as we have here. Moreover, it  leads to a mathematically convenient 
model for the experimentally measured pressure field, viz. 

p(Z)obeerved = z aj $j(kz), (2.6) 

i.e. a linear expansion in the empirical orthogonal functions of the theoretical profile 
set. To whatever extent the observations resemble theory, this model is the optimal 
linear expansion, promising an accurate representation with a minimum number of 
free parameters ai. 

i 

3. Empirical orthogonal functions for Miles' pressure proflles 
The method of empirical orthogonal functions is developed in detail elsewhere (see, 

for example, Lorenz 1956; Moore 1974). In  the present application, it proceeds as 
follows. 

We have already noted the qualitative similarities among the 110 pressure profiles 
computed from Miles' theory; this degree of similarity, in fact, extends to both real 
and imaginary parts. Consequently, all 220 a and /3 profiles were interpolated to 50 
standard elevations in the co-ordinate h' = 1 - e+' ranging from 0 to 0.99 999 (z 1.8 
wavelengths up into the flow), then assembled into a 50 x 220 'data' matrix Q. The 
50 x 50 'covariance' matrixQQT was then computed. The eigenvectors of this matrix 
are the optimal basis function set for modelling the pressure profiles forming Q. 
Specifically, if we assemble the J eigenvectors $i with the largest eigenvalues into a 
50 x J matrix 9, we may write 

Q = O A + R ,  

where A is a coefficient matrix and R the matrix of residuals not representable by 
(i.e. orthogonal to) the eigenvectors in 0. It can be shown that no other choice for 9 
having the same dimensions can produce a smaller residual (i.e. a smaller Euclidian 
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No. Eigenvalue yo of total variance 

9.9060 x 104 
6.0873 x loa 
1.6'744 x 10 
8.4046 x lo-' 
9.8968 x 

99.4744 
0.6078 
0.0168 
0.0008 
0*0001 

TABLE 1. Eigenvalues of the Miles pressure profiles covariance matrix 

norm I[ Rl12, which is just the sum of the squared errors in the model representation 
QA of 0). Moreover, if Q includes all of the eigenvectors with non-zero eigenvalues, 
Q can be represented exactly (R vanishes). Finally, each eigenvalue is proportional 
to  the fraction of the variance of the entire data set representable by the corresponding 
eigenvector (which is why Q was constructed with the J eigenvectors with largest 
eigenvalues). The five largest eigenvalues of Q Q T  are shown in table 1. Clearly, the 
successive eigenvalues are converging on zero so rapidly that additional eigenvectors 
are totally unnecessary to adequately represent the data. We can, in fact, model 
99.9999 yo of the variance in the whole data set using only the first four eigenvectors, 
and, for the results reported here, Q was composed of these four, normalized so that 

QTQ = I, 

where I is the 4 x 4 identity matrix. The 4 x 220 coefficient matrix A is then given by 

A = QTQ. 

The four dominant eigenvectors, numbered in order of descending eigenvalue, are 
listed in table 2 and shown graphically in figure 4. The fundamental mode, accounting 
for 99-47 yo of the variability about zero of the Miles profile set, is a smooth curve 
which decays monotonically toward zero at a rate somewhat slower than e-kz. The 
second mode drops from a positive value a t  the surface to a negative minimum at 
about h' = 0.57 before decaying to zero. Higher modes exhibit increasingly rapid 
oscillations with z and rapidly diminishing contributions to the variance of the set of 
theoretical profiles; the third mode contributes 1/30 that of the second, while the 
contribution from the fourth is 1/635 that of the second (cf. table 1) .  

The elements of the matrix A provide the grid of complex coefficient values a; 
contoured in figures 5(a)-(h). These plots, along with the eigenfunctions shown in 
figure 4 and table 2, summarize the theoretical wave-induced pressure calculations 
according to Miles for this domain of parameters. Note that the fundamental mode #1 
dominates the pressure profile shapes over much of the (C', !2) plane, the topography 
of a; being typically an  order of magnitude (or more) larger than that of a;, a;, 
and a;. Hence, pressure profiles for this range of parameters will decay with z, like #1, 
more slowly than e-kz. Note also that, as C' and fi increase, the increasing contribution 
to the profile shapes of q52 relative to 
resulting in a gradual shift toward e-kB dependence. These characteristics are consistent 
with the observations of EIliott (1972) which indicated a slower-than-e-kz decay of 
the wave-induced pressure field and a tendency of the decay to shift toward e-kz as the 
ratio of wave phase speed to wind speed increased. (However, Elliott did not detect 

tends initially to cancel t,he curvature in 
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h‘ 

0 
0.0204 
0.0408 
0.0612 
0*0816 
0.1020 
0.1224 
0,1429 
0.1633 
0.1837 
0.2041 
0.2245 
0-2449 
0.2653 
0.2857 
0.3061 
0.3265 
0.3469 
0.3673 
0.3878 
0.4082 
0-4286 
0.4490 
0.4694 
0.4898 

0.5102 
0.5306 
0.5510 
0.57 14 
0.5918 
0.6122 
0.6326 
0-6531 
0.6735 
0.6939 
0.7143 
0-7347 
0.7551 
0.7755 
0-7959 
0-8163 
0.8367 
0-8571 
0.8775 
0.8980 
0.9184 
0.9388 
0.9592 
0.9796 
1 

$1 

0.2126 
0-2109 
0.2096 
0.2081 
0.2063 
0.2042 
0.2019 
0.1995 
0- 1968 
0.1940 
0.1911 
0.1880 
0.1847 
0.1814 
0.1779 
0.1743 
0.1706 
0.1668 
0.1629 
0-1589 
0.1548 
0.1507 
0.1464 
0.1421 
0.1376 

0.1331 
0.1285 
0.1239 
0.1191 
0.1 143 
0.1094 
0.1045 
0.0994 
0.0943 
0.0891 
0-0838 
0.0785 
0.0731 
0.0676 
0.0620 
0.0563 
0.0506 
0.0447 
0.0388 
0.0327 
0.0266 
0-0203 
0.0138 
0-007 1 
0 

$* 
0.4728 
0-3653 
0.2861 
0.2319 
0.1867 
0.1479 
0.1140 
0-0839 
0.057 1 
0.0331 
0.0114 

- 0*0081 
- 0.0258 
- 0.0417 
- 0.0561 
- 0.0690 
- 0.0807 
-0.0911 
- 0.1004 
- 0.1086 
-0.1158 
- 0.1220 
- 0.1274 
- 0.1318 
- 0.1355 
- 0.1384 
- 0.1405 
- 0.1418 
- 0.1425 
- 0.1424 
- 0.1417 
- 0,1403 
- 0.1383 
- 0.1357 
- 0.1324 
- 0.1285 
- 0.1240 
-0.1189 
-0.1132 
- 0.1068 
- 0.0998 
- 0.0922 
- 0.0839 
- 0.0749 
- 0.0652 
- 0.0547 
- 0.0432 
- 0.0307 
- 0.0168 

0 

$* 
0.6022 
0.1939 
0.0375 

- 0.0528 
- 0.1088 
- 0.1435 
- 0.1638 
- 0.1741 
- 0.1769 
- 0.1742 
- 0.1674 
-0.1575 
- 0.1462 
-0.1311 
-0.1168 
- 0.0997 
- 0.0829 
- 0.0059 
- 0.0488 
- 0.03 18 
- 0.0151 
0*0012 
0-0170 
0.0322 
0.0408 

0.0605 
0.0734 
0.0853 
0.0963 
0.1063 
0.1152 
0.1229 
0.1295 
0.1349 
0.1391 
0-1420 
0.1436 
0.1439 
0.1428 
0.1401 
0.1360 
0.1301 
0.1225 
0.1133 
0.1019 
0.0882 
0-0723 
0.0533 
0.0305 
0 

$4 

0.4666 
- 0.1248 
- 0.2337 
- 0.2486 
- 0.2259 
-0.1866 
- 0.1409 
- 0.0940 
- 0.0490 
- 0.0074 
0.0296 
0*0616 
0.0886 
0.1102 
0.1271 
0.1390 
0.1466 
0.1500 
0.1494 
0.1454 
0.1383 
0.1285 
0.1162 
0.1017 
0.0855 

0.0678 
0.0490 
0.0294 
0.0093 

- 0*0110 
- 0.0312 
- 0.0509 
- 0.0700 
- 0.0882 
- 0.1052 
- 0.1207 
- 0.1345 
- 0.1464 
- 0.1561 
- 0.1035 
- 0.1680 
- 0.1697 
- 0.1677 
- 0*1620 
-0.1522 
- 0.1377 
-0.1175 
- 0.0900 
- 0.0545 

0 

TABLE 2. Empirical orthogonal functions for Miles’ pressure profile6 
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FIGURE 4. Empirical orthogonal functions derived from the pressure profiles computed from 
Miles’ theory. The functions shown are those with the four largest eigenvalues and are ordered 
according to descending eigenvalue (see table 1). 

the faster-than-e-kz decay predicted by the theory for the higher C’ and SZ values; 
see, for example, the profiles of figure 3 ( b )  for C‘ = 7, 8, 9 and 10.) It is difficult to 
make more precise comparisons between Miles’ theory and existing field data because 
the experimental values of the wind profile parameters U, and SZ have not been 
sufficiently well known; determinations of SZ, in particular, are subject to large and 
erratic fluctuations, presumably due to the sensitivity of this parameter to instrumental 
and statistical sampling error. Nevertheless, these qualitative agreements with 
Elliott’s observations lend additional support to the notion that a parametrical model 
based on Miles’ theory may be nearly optimal for representing pressure profiles existing 
in nature. 

This hypothesis cannot be tested against real profiles because no direct, model- 
independent determination of the structure of real, wave-induced pressure profiles 
has been accomplished; but we have tested the flexibility of the expansion by fitting 
it to theoretical profiles which are not members of the Miles set, for example one 
characteristic of potential flow (p’ = -e-fi’) and another computed according to the 
theory of Long (1  971). (Long’s theory incorporates perturbation turbulent Reynolds 
stresses using a closure hypothesis similar to Townsend’s (1971).) These profiles were 
well represented by two-term expansions; using four terms, the reconstructions were 
almost identical with the originals. 
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FIGURE 5. For legend see p. 179. 
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FIGURE 5. For legend see p. 179. 



178 R. B. Long 

0.021 

0.01 7 

0.013 

52 

0.009 

0.005 

0.00 1 
1 3 5 7 9 

C' 

0.021 

0.017 

0.013 

52 

0.009 

0.005 

0.00 1 

FIGURE 6. For legend see facing page. 
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FIGURE 6. Coefficients of the four-function expansion of Miles' pressure profiles, P' = Xf-l a; q$. 
Panels (a), (c), (el and (9) show the real parts of a; to a: respectively; while (b ) ,  (d), (f) and 
(h) show the corresponding imaginary parts. The curves are contours of constant Re {a;} or 
Im{a;}. In some regions, intermediate contours (dashed curves) have been added to aid 
interpolation. 
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4. Applications 
To reconstruct a theoretical profile such as those shown in figure 3, one reads the 

real and imaginary parts of the complex coefficients ai(C’, 51) from the corresponding 
contour plots and forms the sum 

4 

j=1 
P(C,  51; h’) = a,(C‘, 51) $hj(V), 

To the extent that the coefficients may be accurately determined from the plots, this 
four-term expansion is capable of representing the profile so precisely that, on the 
scale of figure 3, the reconstruction is indistinguishable from the original. Dimensional 
profiles are then given by 

4 

j=l 
fi(u*, z O , ~ ,  0; 2) = x aj(U*, z O , ~ ,  W )  +ji(k(w) 21, 

where 

and the dependence on wind and wave parameters has been indicated explicitly. On 
the other hand, in dealing with experimental data of the form (1.3), the coefficients 
are allowed to be free parameters in a model for I? (equation (2.6)); then using the 
model in (1.2) gives 

J 

j=1 
Egp(U*,zo,@,w;z) = Ege(8,w) S aj”(u*,zo,0,w)$hj(k(w)z), J ,< 4. 

The ui are then fixed by fitting this model for E,, in the least-squares sense to the 
available set of frequency cross-spectra I?,,. 

This completes the parametrization of the vertical dependence of I? (and, hence, 
ESP) .  In  practice, the fitting of this model to data of the form (1.3) requires that the 
dependence of the uj on 8 also be parametrized. Although this aspect of the model- 
fitting problem is peripheral to the present study, some comments seem appropriate 
to place the present work in perspective. 

To take maximum advantage of the linearity of the proposed vertical structure 
model, the parametrization of the 6 dependence should also be linear, in which case 
the integration over 0 in (1.3) can be carried out. This suggests the expansion 

to the observed data G,, in the least-squares sense reduces to solving a set of linear 
algebraic equations for the unknown complex coefficients bjnL. As with the z dependency, 
it’ is important to choose a basis function set, capable of adequately approximating the 



The induced atmospheric pressure jield above gravity waves 181 

true distributions with a minimum number of terms in the expansion. This suggests 
turning again to theory for guidance; we could, for example, perform an empirical 
orthogonal function analysis of the a; values derived from Miles' theory to deduce the 
two-dimensional basis function set ak(C', Q); then, from (4.1), 

The integral in (4.2) would then become 

the factor (U,/K)2pk being absorbed into him. Given the parameters of the experiment 
(U*,zo, and Ega), the integration range 0 c 8 c 277 corresponds at  a given frequency 
w to a specific curve in the (C', Q) plane; the integral could then be evaluated numeric- 
ally for each m and instrument displacement r, leaving a set of linear, algebraic 
equations for the free parameters bj9n. 

No analysis as elaborate as this has been justified by the data collected to date. 
Both Dobson (1971) and Elliott (1972), lacking directional discrimination in the 
designs of their experiment, assumed apriori that both wave and pressure fields were 
essentially unidirectional, which is equivalent in the notation of (4.2) to setting 
M = 1 and taking 

Ep(O, w )  a;" = E g a ( W )  S(8) 

(where ECa(w) is the surface wave frequency spectrum and 6(8) the Dirac delta function). 
Further, their observations were unable to resolve the separate influences of U, and 
zo, so that they chose a single parameter, the wind speed at  5m elevation (Us)) to 
characterize the wind. Snyder et al. (1980)) in analysing the most extensive data set 
yet collected on the pressure field above waves, chose for their linear analysis 

deeming their data still inadequate to sort out more than a one-parameter dependence 
on the wind profile. While characterizing the wind profile by U, makes a rigorous 
comparison of the experimental results with theory difficult, it  is an experimentally 
unequivocal parametrization and yields a useful empirical representation of the 
atmospheric input to waves (for application to wave fore/hindcasting models, for 
example). 

Ultimately, the value of our proposed model for the vertical structure of wave- 
induced atmospheric pressure depends on how well it reproduces real profiles with a 
minimum number of terms in the expansion. Until direct, model-independent deter- 
minations of the structure of real profiles have been achieved, the only accessible 
measure of model performance is the extent to which data of the form (1.3), observed 
at a few discrete values of z and r, match the corresponding integral properties of the 
model. Error in these fits arises from many sources, including statistical variability 
in the observations, errors in the estimation of E,a, and shortcomings in the para- 
metrization of the directional dependence of P as well as inadequacies in the vertical 
structure model, and it is difficult to identify that component due primarily to the 
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(a) Laguerre baeis 
J 

M 

3 
4 

1 

0-0961 
0-0867 

2 3 

0-0855 
0.0852 

( b )  Miles empirical orthogonal function basis 
J 

M 

3 
4 

0.0848 
0.0846 

1 

0.0863 
0.0863 

2 3 

0.0867 
0.0863 

0.0861 
0.0869 

J = number of terms in the vertical structure expansion of p. 

TABLE 3. Proportional variance of model fits to the field 
data of Snyder et at!. (1980) 

M = number of terms in the directional expansion of P. 

latter. Some indicationis provided by the analysis of Snyder et al. (1980), who tabulated 
the proportional variance (mean-square difference between modelled and observed 
cross-spectra normalized by the product of the corresponding observed autospectra) 
of fits to a total of six data sets acquired with an array of six microbarographs and 
five wave gauges. The directional properties of were modelled using the urn 
indicated above, while the vertical structure expansion used the empirical orthogonal 
functions developed here and an alternative set of non-orthogonal functions 

$i = (z’)i-le--z’ 

(related to the Laguerre polynomials). When only one term in the vertical structure 
expansion and three terms in the directional expansion are used, the empirical ortho- 
gonal function model seems clearly superior (see table 3), implying in this case that the 
experimental profiles more closely resemble the fundamental empirical orthogonal 
function of figure 4 than they do e-k5; this is consistent with Elliott’s observations as 
discussed in 3 3. Moreover, retaining additional terms in the empirical orthogonal 
function expansion fails to make a significant improvement, indicating that the 
residual variance in the fits is already dominated by sources unrelated to the P model. 
The Laguerre expansion, on the other hand, is improved by adding an additional term 
in either expansion, after which differences between the two model choices become 
negligible. Though the discrimination of these comparisons is obviously poor, they 
do provide additional support for the use of the empirical orthogonal function basis 
for this type of analysis. 

5. Summary and conclusions 
The spectral quantity defining the rate at which energy is transferred from wind 

to waves is the surface-elevation/atmospheric-pressure directional cross-spectrum E,., 
evaluated at  the mean water surface. Experimentally, it is very difficult to measure 
the atmospheric pressure at  this level in the presence of waves, but by making observa- 
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tions of surface elevation and air pressure a t  various horizontal and vertical positions, 
certain integral moments of E,, can be estimated; E,, may then be estimated by 
fitting a parametrical model to the observations. To assure statistical significance, the 
model must be efficient a t  representing the observations wiLh a minimum number of 
free parameters; moreover, the vertical structure of the model is critical if its value a t  
the mean water surface is to accurately approximate the true (but experimentally 
inaccessible) value of E,, a t  z = 0. Using the theory of Miles (195 7)  for guidance, we 
have designed a parametrical model for this vertical dependence in the form of a 
linear expansion in a set of empirical orthogonal functions derived from a set of 
theoretical pressure profiles. As a by-product of the model development, we have 
produced contour plots of the coefficients of a four-function expansion of the same 
set of theoretical profiles. These, along with the corresponding empirical orthogonal 
functions, provide a graphical means of reconstructing the theoretical wave-induced 
pressure field. 

The empirical orthogonal function expansion is capable of representing all of the 
Miles theoretical profiles with great accuracy using only a few terms and exhibits 
sufficient flexibility to reproduce profiles derived from alternative theories with nearly 
equal efficiency. It seems likely, therefore, that this expansion will be highly efficient 
at reproducing pressure profiles existing in nature. It has been successfully used to 
analyse a body of experimental data on wave-induced atmospheric pressure fluctua- 
tions by Snyder et al. (1980).  
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